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HYDRODYNAMIC PROPERTI@ OF PLANING SURFACZS 

AND FLYIN2 BOATS* 

By N. A. Sokolov 

INTRODUCTION 

The study of the hydrodynamic properties of planing bottom 
of flying boats and seaplane floats ie at the present time based 
exclusively on the curves of towing tests conducted in tanks. 

In order to provide a rational basis for the test procedure in 
tanks and practical deeign data, a theoretical study muet be made 
of the flow at the step and relations derived that show not only 
qualitatively but quantitatively the inter-relatione of the various 
factors involved. 

The general solution of the problem of the development of 
hydrodynamic forces during the motion of the seaplane float or fly- 
ing boat is very difficult for it is necessary to give a three- 
dimensional solution, which does not always permit reducing the 
analysis to the form of workable computation formulas. On the 
other h a d ,  the problem is complicated by the fact that the object 
of the analysis is concerned w i t h  two fluid medim, namely, air 
and water, which have a surface of density discontinuity between 
them. 

The theoretical and experimental investigations on the hydro- 
dynamics of a ship cannot be completely carried over to the design 
of floats and flying-boat hulls, because of the difference in the 
shape of the contour lines of the bodies, and, because of the 
entirely different flow conditione from the hydrodynamic view- \> 

I 
point. Thus in ship conetruction, only the hydrostatic forces are \ 
considered ard the hydrodynamic lifting forces are entirely ignored; \ 
in flying-boat conetruction this procedure cannot be followed because 

*"kterialy PO Gidrcdinamicheskomu Raschetu Clisserov 1 
Gidrosamoletov." CAHI Report No. 149, 1932, pp. 1-39. 
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f o r  the working epeede of the planing surface (of the order of 60 
t o  100 km/hr) the hydrodynamic forces take up the greatest par t  of 
the w e i g h t  of the structure,  only a small part of the weight being 
supported by the hydroetatic forces due t o  the water displacement. 

This en t i re  analysis w a s  conducted on the assumption of two- 
dimensional flow. A picture of the flow about the seaplane float 
i n  the re la t ive  motion a t  the instant a f t e r  r i s ing  on the s tep is 
given i n  f igure 1. The l tnes  of flow LD going from i n f in i ty  and 
meeting a t  the sur'face of separation of the air  and water mediums 
separate a t  point D, 
the air passing above, a d  flowing around the f l o a t  along the l i n e  
DCB; the particles of water, mving along the l i n e  DEB w e t  the 
contour of the float below. A t  point B, these two boundary l i nes  
of the gaseous and l iquid mediums again meet forming the separating 
surface BH. 

where they meet the float, the streamline of 

In the case of the flaw about a two-step planing bottom i n  a 
two-dimensional ideal f l o w ,  the f l o w  picture w i l l  have a somewhat 
different  appearance (f ig .  2) .  The air par t ic les  lying on the line 
of flow (separating surface) LD w i l l ,  as before, flow about the 
above-water part of the body DCF. 
the atreamline LD i n  contact with the par t ic les  of a i r  wet the 
surface of the body s ta r t ing  a t  the point D. A t  point B, the 
water par t ic les  leave the contour of the planing ourface, wet the 
rear part EKN 
point N they again meet the surface, leave it a t  point F and 
continue along the separating surface FH. 

The water par t ic les  meeting on 

( i n  an actual  flow, the region of suction), a d  a t  

I n  an actual  flow f o r  a f i n i t e  span of the planing surface, the 
f l o w  picture i n  the above-water par t  w i l l  d i f f e r  considerably from 
the picture jus t  given but the flow picture of the below-water par t  
remains essent ia l ly  the same. 

This paper develops, i n  general form, the l i f t  and drag equa- 
tione for  the motion of a solid body on a separating surface. 
coneidering the sol id  body as a half-submerged f lat  plate,  these 
formulas are modified somewhat and the l i f t  and drag formulas for 
the planing f lat  plate  are obtained. By evaluating the experimental 
data, the analyt ical  expressions are supplemented w i t h  test curves 
and f ina l ly  a l l  data required f o r  the hydrodynamic computation of 
a seaplane float or flying boat with a f la t  b o t t m  are obtained. 

Then, 
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1. MOTIOH OF SOLID BODY AT BOUNDARY OF W O  FLUID 

MEDIUM3 OF DDD%RENT l?ENSI_Ty 

In the general case, t h i s  problem may be formulated as followe: 

The sol id  bcdy A move8 farward with constant velocity Vo i n  
such a manner that a t  a l l  times during the motion the part 
i n  the f l u i d  medium I of density 
the contour DEB is  in  the f lu id  medium I1 of density p2 (fig.  3). 

x-axis coincides with the surface separating the f lu ids  i n  the 
undisturbed s t a t e  and is directed along i n  the direction of motion, 
the y-axis being a t  r igh t  angles and directed up. 

DCB is 
pl; whereas the part bounded by 

In considering the re la t ive  motion, it is assumed that the 

The flows are assumed two-dimensional; both flows are potential ,  
and the separating surface i n  the re la t ive  motion is fixed. 

In  passing from f lu id  I t o  f lu id  11, there is a discontinuity 

Moreover, there is a velocity diecon- 
i n  the deneity and i n  the first derivatives of the  pressure with 
respect t o  the coordinates. 
t inu i ty  a t  the separating surface. A t  an in f in i t e  distance i n  f ront  
of the bcdy, both f lu ids  are assumed t o  be re la t ive ly  a t  r e s t ;  phye- 
i ca l ly  t h i s  aesmption is canparable t o  assuming that i n  the motion 
of the sol id  bcdy over the water surface there i s  no t a i l  or head 
wind. 

Because medium I possesses a l l  the properties of two-&imensional 
f l o w ,  the usual hydrodynamic equations of two-dimensional flow can 
be applied and the  resul tant  pressure from flow I, on the  portion 
of body A which is bounded by the l ine  BCD and wetted by f lu id  I, 
can be obtained. The resultant preesure of f l o w  I1 on the remaining 
part of bcdy A, which is bounded by the contour DEB and wetted 
by f lu id  11, can be found by meane of a similar manner of operation 
w i t h  medium 11. 
and I1 is equal t o  the geometric sum of the forces exerted separately 
on the moving body by each f low.  

The t o t a l  force exerted on the body by f lu ids  I 

In  the following discussion, a l l  the results are expressed in 
terme of f lu id  11. The final formulas f o r  medium I w i l l  be the same 
as for  medium I1 except for  change i n  the contour of integration and 
replacement of p2 and r2 by p1 and rl, indicating that the 
mass and weight densi t ies  are now referred t o  medium I. For conven- 
ience the subscripts indicating that the nragnitudes refer t o  medium I1 
a r e  anitted. 
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D 

For steady motion with velocity potential ,  the pressure a t  any 
point of the wetted contour BED by m e d i u m  I1 is determined by the 
Bernoulli-Lagrange equation 

p = c -  .f- YY 

The components of the pressure along the coordinate axe8 f o r  the 
element ds of the contour may be wri t ten 

The camponents of the force P2 exerted on the so l id  body b,y 
m e d i u m  I1 along the ax is  are obtained by integrating these expres- 
sions over the contour BED. These components are denoted by X2 
and Y2; then 

J BED 
r y y a x - e  

2 

J BED 

Y2 = s 
The Bernoulli constant C is determined by the conditions a t  
inf in i ty  ( y  = 0, V = Vo, p = p,) and is given by 
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In medium 11, l e t  the flow be determined by t h e  complex potential 
function 

where (p2 is the velocity potential and q2 is the stream function. 

With regard to the velocity potential (p, it should be noted 
that for flows I a d  I1 the form proposed by N. E. Joukowsky, f o r  
the flaw about a wing, will be used: 

where f (x ,y)  
Laplace equation. 

is a function of the coordinates that eatisfy the 

With regard to the function f(x,y), the following point may 
be made: The derivatives of the function f(x,y), af/ax, and 
af/ay, 
by the moving body, have these properties: 
in front of the moving body and below and above the body, the deriv- 
atives are  of the order of smallness 1/R; 
behind the moving body, but sufficiently near the separation surface, 
the derivatives a r e  finite. 

which give the added (disturbance) flow velocities produced 
At an infinite distance 

at an infinite distance 

In the motion of a body of a homogeneous-infinite fluid the 
derivatives af/ax and af/ay, everywhere w i t h  increasing distance 
f r o m  the body, a r e  of the order of Bmallneas 1 / R .  

Because the line BED is a streamline, 

Add to the right side of the expression for X2 the sum of the 
terma 
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and correspondingly f o r  Y2 

Both of the added expressions are equal t o  zero inasmuch as for  
the streamline BED d$ = (- Vo + 2) dy - 
t i o m  ( 2 )  still hold. 

dx = 0 so that equa- 5 

Because 

equatiom (2)  can be rewrit ten separating the terms i n  the following 
manner : 

J B n ,  J BED J B Z D  
n 
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The corresponding expressions fo r  X1 and Y1 can be obtained 
f o r  f lu id  I, XI, and Y1 being obtained f r o m  X2 and Y2 by 
replacing p2, y2 by pl, yl ard the contour of lntegratlon BED 
by the contour DCB. 

The similar t e r n  of the expressions f o r  X2 and Y2 sha l l  be 
considered I n  pairs and by analogy the same terms for medium I. 

The fire', suma of the Integral8 fo r  the mediume I an3 I1 

LB 
and 

L 
+ Po Im = 0 

r d Y  + Po a y = o  

J BED 

are equal to zero because the integrals of dx and dy are taken 
over the closed contour DCBED. 

The following terms of equations (5) w i l l  be considered; they 
a re  correspondingly denoted by X u ,  XZF, Y u ,  and Y2F where 
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Theae expreeelons, In general, give the reeletance forces and 
the lift forces due t o  the hydroetatic preesure on the wetted con- 
tours DCB and BED. 

In computing the l i f t  forces YIF and YZp, It 1s necessary 

The volumes Jydx f o r  medium I are taken between the contour 
DCB and the x-=Is, which is the water-line of the motion. The 
volumee lying below the water-line are taken with the minus sign 
(fig.  4) .  
the volu;nss lying above the x-axis (for example, the  area DdD1) 
a r e  negative. 

t o  consider the following: 

For medium 11, the rule  of computation is the opposite, 

htroducing the notation 

3'1 = area B 'CDD'B 

F2 = area BtDIEBB1 

Fg = area D'DdDl 

F4 = area BbB'B 

for the forces YP and YZF, the following expressions are 
obtained : 

Finally, X- and X 2 ~  give the projection on the x-axis of 
the hydrostatic pressures of f luids  I and I1 on the contours DCB 
and BED. By denoting the projectlone of BED' and BED on the 
y-axis by boy a d > o r  by h i  and h2, the ordimtee of the 
pointe D and B 'can be obtained-t'or Xm and XZF. -, 

L-.- - - -' _ -  
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7 h12 - %2 

'2 
by(2bOy - by) 

2 ,= Yl .. xm- = Yl-. 

The force X n  is directed along the motion; the force XZF, which 
is a resistance, is directed-opposite the motion. 

In the case of the motion of a bcdy In a homogeneous fluid 
(rl = y 2 ) ,  
water displacement of the bcdy and, as wae to be expected, a resist- 
ance equal to zero: 

equations ( 8 )  a d  (9) give the lift force equal to the 

In determining the forces acting on a wing moving through air, 
the fluid is assumed to be weightless and for the w i n g  the hydro- 
static lift force is negligibly small. 

By returning to equations (5) 
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The physical interpretation that must be given to the obtained 
formulas in the limiting case where the densities of the fluids are 
equal; that is, when the body moves through a homogeneous fluid, w i l l  
be considered. 
tour DLWBB shall be considered and for fluid I1 the contour BHVLD. 
The sum of these contours is equal to the circle of infinitely 
large radius and they have two branches, DL and BH lying in the 
surface of separation of the fluids, extending to infinity. In the 
limiting case of a homogeneous fluid (01 = DZ),  the surfaces 
and BH are not surfaces of separation and there is no discon- 
tinuity in velocity or deneity (fig. 5 )  . 

As the contours of integration, for fluid I the con- 

LWBV 

DL 

The possibility of replacing the contours DCB and BED, respec- 
tively, by DLWHB and BHVLD, will now be considered. 

The pair of contours DCB + BHVLD and BED + DLWHB give the 
two closed contours DCBWIS and BEDLWEB. 

It shall now be proven that the expressions XN and YN taken 
for the closed contours are equal to zero. 
sufficient to show that the expressions under the integral sign are 
the total differentials of certain functions, that is, 

For this proof, it is 

By expanding these expresslone, the following relations are 
obtained : 
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The-function f(xy) by hypothesis s a t i s f i e s  the Laplace equa- 
t ion; thus, it has been shown w h a t  w a s  required so that the contours 
DCB and BED are replaceable by the contours BHVLD and DLWHB, 
respectively. It is merely necessary t o  change the sign before the 
integral  f o r  the described direct ion of going around the contour. 

. The same subetitution is permissible for the expression YJ 
because the function under the integral  gives the c i rculat ion over 
an element of the contour due t o  the added flow The c i r -  
culation due t o  the added f l a w  for  any closed contour l y i n g  en t i re ly  
i n  the f luids  I and I1 is equal t o  zero f o r  there are no vortices 
within the f luid.  

f(xy). 

By integrating the  terms XN and YN over the l i nes  DL and 
BH 
is obtained becauee the order of describing these contours of integ- 
ra t ion  for  the  f lu ids  I and I1 are  opposite. 

once f o r  f lu id  I and a second t i m e  fo r  f l u id  11, the sum zero 

On integrating the same terms Xs and YN over the c i r c l e  
LWHV 
the order 1/R results because af/& and af/ay, i n  the case 
of motion of the body i n  a homogeneous f lu id  without a surface of 
discontinuity, are of the order of smallness 
XN and YN are equal t o  zero f o r  the motion of a body i n  a homoge- 
neous f luid.  

of in f in i te ly  large radius, an inf in i te ly  s m a l l  magnitude of 

l /R.  Thus, the terms 

Further, the term YJ = pVo df taken fo r  the f lu id  I over S 
the contour BHVLD and for  f lu id  I1 over the contour DLW5 gives 
as a r e su l t  the expression 

where J 
includes the contour of the moving body. It is not d i f f i c u l t  t o  
see that the terms YJ taken over the lines DL and BH cancel, 
for ,  i n  this case, the directions of passing a r o d  the contours 
of integration for the f lu ids  I and I1 are opposite. 

is the circulat ion of the f lu id  over any contour tha t  

In the general case of the motion of a body i n  a homogeneous, 
weightless, and incompreseible f luid,  the result leads, as was t o  
be expected, t o  the theorem of N. E. Joukowsky on the l i f t  of an 
a i r fo i l .  
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The physical meaning that must be given to the obtained for- 
mulas for the motion of a solid body on the boundary of two fluid 
mediums in the presence of the aurface of diecontinuity DL and HB 
will now be investigated. 

Consider the terms 

where XN and YN are given by equations (11). 

It has been shown that in the case of the motion of a body in 
at5homogeneous fluid, the velocities of t he  additional flow 
and af/ay, having the order of smallness 1/R,  give on integrating 
over a contour of infinite radius zero for the terms XN and YN. 

&'/ax 

In the motion of a bcdy on the surface of separation of two 
heavy fluids, the picture is somewhat different. 
behind the moving body does not decrease the amplitudes of its 
waves because the case of the motion of an ideal fluid is being 
considered. For this reason, the velocities of the additional f l o w ,  
even at an infinite distance from %he 'body but sufficiently near the 
surface of separation, have a finite value and the terms 
YN do not give zero on integration. 

The wave surface 

XN and 

It was impossible to reduce.the expressions XN and YN to a 
shorter and simpler form. In what follows the term XN shall be 
denoted as the form drag. 
the x-axis of the resultant hydrodynamic pressure of an ideal fluid 
on the wetted contour without taking account of the hydrostatic 
pressure. 

The form drag gives the projection on 

* 

The term YN shall be considered in detail later in this report. 

The last terms considered have the expression 
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where 

, 

J BED 

Physically, these expressions give the magnitude of the l i f t  
force due t o  the circulat ion of the f lu id  and are equal t o  the c i r -  
culation about the wetted contour multiplied by the density of the 
f lu id  and velocity of the f l o w  a t  inf ini ty .  The theorem of N. E. 
Joukowsky, i n  a somewhat different  form, has thus been obtained; 
namely, i n  the motion of a body on the surface of separation of two 
f l u i d  mediums of different  density, the l i f t  force due t o  the c i r -  
culation is equal t o  the sum of the two forces each of which is 
determined as the product of the circulations over the wetted con- 
tour multiplied by the density of the given f lu id  and the flow 
velocity at  inf ini ty .  

I n  summarizing, the forces acting on a sol id  body moving half 
submerged on the surface of separation of two heavy f l u i d  m e d i m  
I and I1 with densi t ies  p1 and p2 may be expressed as follows: 

The t o t a l  resistance force is equal t o  

where 
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"he forces X n  and X2F give the projections on t h e  x-axis 
of the hydrodynamic force on the wetted contour. 

The forces XIN and X2N are the form drags. 

"he t o t a l  l i f t  force is expressed by 

where 

P 
Y , = 1  2 1 

J DCB 

P 

J BED 

Forces YIF and YzF give the volumes of the displaced l iquids 
I and 11. 
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Forces Y1J and Y2J give the lift forces due to the circula- 
tion. 

The test results shall now be considered and the formulas 
obtained shall be applied to the case of a flat half-submerged plate; 
the resulte obtained at the'Hamburg towing basin by Sottorf shall be 
used. 

The order of the component force8 is determined in percentage 
of the total lift force and resiatance. "he curves of figures 6 
and 7 give this relation and refer to a flat plate tawed with con- 
stant velocity (Vo t 6 m/sec) for a constant vertical load (Y = 18 kg) 
and having a span at right angles to the direction of motion 
( 2  = 0.3 m). 
dynamical forces were not taken into account. 

"Re forces were computed only for water; the aero- 

Inspection of these curves permits the following conclusions 
to be drawn: 

1. EQuation (17) gives for the lift forces three components: 
the hydrostatic, the one due to circulation, and the one due to 
form. The numerical computation given and figure 6 show that the 
lift force YN, due to the form, is practically zero. (In the 
computation the magnitude, YN constituted no more than 3 percent 
with some fluctuations on either side due to the inaccuracy of the 
computation procedure.) In this case, the total lift force of a 
solid body is equal to the sum of two forces: (1) the hydrostatic 
force YF and (2)  the force due to the circulation YJ, which 
gives the physical analogy to the theorem of Joukawsky where the 
total lift force for the solid bcdy moving in a homogeneous fluid 
is equal to the sum of the circulation and the hydrostatic forces. 
The hydrostatic force, due to its relative smallness for air, is 
generally neglected. 

An assumption based on a comparison of the results of tests 
is expressed here. A strict proof that the lift force YN is 
equal to zero was not obtained. 
nature of the flow about a solid body at the surface of separation 
will permit determining more fully the magnitude and the character 
of the force YN. It should be noted that equating the term YN 
to zero permitted deriving the analytical relation for certain 
magnitudes characterizing the resistance of a moving plate, in 

A deeper analysis of the essential 



. 16 NACA TM 1246 

particular,  the resistance XN. Comparison with the test resul t8  
given by Sottorf confirmed the correctness of the conclusion as t o  
the zero value of Ym, and the character of the test curves f o r  
increasing span of the plate  agrees with the obtained analyt ical  
expression fcr in f in i t e  span. 

2. The hydrostatic l i f t  force, which f o r  small angles of a t tack 
assumes a considerable part of the load, rapidly drops w i t h  in- 
creasing angle of attack, pract ical ly  reaching zero a t  the angle 
of a t tack  a = 10'. 

3. The hydrodynamic l i f t  force, due t o  the circulation, is 
and small a t  small angles of attack, rapidly increases wi th  

a t  10' p rac t ica l ly  assumes the entire ve r t i ca l  load. 
a, 

Both of these conclusions become physically understandable If 
a disturbance i n  the flow ar is ing from the change i n  the angle of 
attack of the plate  is considered. A t  the angle of attack a near 
zero the disturbance In  the f l o w  is small; the streamlines prac- 
t i c a l l y  maintain t h e i r  horizontal direct ion and the circulat ion due 
t o  the added f l a w  of velocity potential  f(xy) over the wetted 
contour is very small. A t  t h i s  instant,  the ent i re  load of the  
plate  can be and is taken up only by the hydrostatic l i f t  forces. 
With increasing angle of attack, the plate  becomes more submerged 
i n  the f lu id ,  the circulation of the added flow increases, and 
therefcre the circulat ion l i f t  force increases. A t  the same time, 
the value of the hydrostatic force re la t ive ly  decreases because the 
hydrcstatic force normal to  the plate  gives, with increasing angle 
of attack, a re la t ive ly  smaller ver t ica l  component. 

The resis tance of the flat plate  i n  moving half submerged i n  a 

Figure 7 shows re la t ive  change of these 
The induced drag due t o  the shed vortices,  i n  the case of 

f lu id  consists of the surface f r i c t i o n  drag, the hydrostatic r e s i s t -  
ance, and the form drag. 
forces. 
a f i n i t e  span of the plate,  w i l l  not be considered because the coef- 
f i c i en t s  derived on the basis of test  reaul ts  already Include the  
effect  of vortex formation on the  planing f la t  plate .  

The following conclusions, which are i n  f u l l  agreement w i t h  
these preceding resu l t s ,  may be derived: 

4. The fYiction drag was computed by  use of formulas that take 
into account the velocity dis t r ibut ion on the surface of the p la te  
and the Reynolds number (see formulas that follow). 
of attack, the f r i c t i o n  drag consti tutes a large part of the t o t a l  

A t  small angles 
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resistance and le of the order of 6 percent for the angle of attack 
a This drop is essentially explained by the decrease in the 
wetted surface with increasillg angle of gttack. 
with the results of tests, the turbulent state of the surface fric- 
tion was assumed here. 

loo. 
In correspondence 

5. The hydrostatic resietance has, in general, a small value. 
At a t 00, 
maximum at a = 2.50 and then drops almost to zero at a = 10'. 
This effect is understandable if the fact that the rise of the 
fluid (to point D, 
static pressure is coneidered. 

the value is practically zero; it increases reaching a 

fig. 4)  decreases the magnitude of the hydro- 

6. The hydrodynamic resistance XN, termed the "form drag," 
is zero at a = Oo and increases with a reaching 93 percent of 
the total resistance of the plate at 
this,phenomenon lies in the fact, that with increasing angle of 
attack there is an increase of that, which in aerodynamics is 
termed the "frontal area" of the plate, that is, the projection 
of the wetted surface, on a plate perpendicular to the direction 
of motion. 
tion of the flaw, hence, an increase in resistance 

a = 10'. The explanation of 

At large angles of attack, there is a greater decelera- 
XN. 

The present work may be viewed as an attempt to investigate 
hydrodynamically t he  aature of the phenomenon of the motion of a 
solid body on the surface of separation of two fluid mediums of 
different densities. 
motion of a solid body is now concluded. 
the general formulae obtained are applied to the motion of a flat 
plate and on the basis of experimental data test curves are pre- 
sented that permit the computation of the planing plate. 

The consideration of the general case of the 
In the next section, 

2. MOTION.OF HAW-SUBMEXED FLAT PLATE 

ON SURFACE OF HEAW FLUID 

In t he  motion of a seaplane or flying boat on the surface of 
water, after rise on the step, the hydrodymmic lift forces assume 
the larger part of the total weight and only a very small part of 
the total weight of the structure is supported by the hydrostatic 
force (force of water displacement). 

At the velocity of motion of a planlng surface equal to zero, 
t h e  entire structure is balanced by the hydrostatic lift forces. 
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Thereafter with increasing velocity (fig.  e) ,  due t o  the hydrOaynamic 
forces that arise, the planing surface begins gradually t o  rise out 
of the water i n  such a =Fer  that the sum of the hydrodynamic lift 
forces and the water displacement forces is a t  a l l  times equal t o  
the weight of the float. A t  the velocity V = VI, it is assumed 
t h a t  the bottom has come out on the step, that is, the i n i t i a l  w e i g h t  
is taken up by the h y d r ~ i c  l i f t  forces, and that the  water dis-  
placement is  not large a d  can be neglected.. Actually, the water 
displacement of the body drops with the velocity and would become 
zero a t  V = QD. 

The contours of the bottom lines of planing bottoms i n  the 
immediate neighborhood of the step closely approximate those of a 
flat  plate. 
of a sea-plane, after coming out on the step, t o  be considered as a 
f la t  plate  moving half submerged a t  the angle of a t tack 
horizontal because the character of the motion is suff ic ient ly  l i k e  
t h a t  of a two-dimeneiollal f l o w .  

This f a c t  permits the supporting part of the bottom 

a with the 

In the case of the motion of a two-step body, the rear s tep 
meets the surface of the water already disturbed by the forward s tep 
and therefore the angle of a t tack of the rear s tep w i l l  not be equal 
t o  the angle between the l i ne  of the bottom and the water l i n e  of 
the motion. 
s tep should be made on the basis of a special  analysis of the phen- 
amenon of the f l a w  about the bottom a t  the rear step. I n  the given 
case, t h i s  report  is res t r ic ted  t o  the consideration of the f l o w  
about the bottom a t  the forward step. 

The choice of the optimum angle of at tack a t  the rear 

Let the f la t  plate  of infinite width, submerged t o  the length 
bo, move with velocity Vo over the water surface a t  the  angle of 
attack a t o  the horizontal. As is shown by experiment, the wetting 
of the surface of the moving plate  starts not a t  point E (fig.  9 ) ,  
which is determined by the intersection of the horizontal with the 
plate,  but somewhat higher, namely, a t  point D. The r a t i o  b t BD 
t o  bo = BE is a cer ta in  m c t f o n  of the angle of attack, the vel- 
ocity of motion and the depth of submergence of the plate.  

The present discussion considers the coordinate points as known 
and, therefore, the t rue wetted area S = 2b is known. A t  the end 
of t h i s  paper it w i l l  be shown haw the value of the r a t i o  b/bo 
may be approximately determined. 

Application of equations (15) and (17), derived i n  the general 
case for the so l id  body of arbi t rary shape moving on the surface of 
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separation of two fluide, will now be made to the motion of the 
partly submrged flat plate. 
the particular problem of constructing the graph of the lift and 
drag forces of a flying boat hull or seaplane float during take-off 
on water, thie paper is restricted to the determination of the forces 
acting on the plate'due only to the water and not the aerodynamic 

. forces, which in view of the variety of shapes of the above water 
parts may be more reliably obtained f r o m  special wind-tunnel teste 
onmodels. Thus, in all the following equations p1 and y l  w i l l  
not appear a d  p2 and 72 ,  now denoted by p and y ,  will cor- 
respond to the mass and weight density of the water. 

In applying the obtained resulte to 
. .  

The kinematic condition for the line of flow LDmH coinciding 
with the part DEB of the plate (fig. 9 )  may be written 

where a denote8 the angle of attack of the plate. In what follows 
a new magnitude b, 
retardation of the flow over the part 
Thus, by denoting the total velocity of the flow at the streamline 
by V and the flow velocity at infinity by Vo, the retardation 
will equal the difference: 

which shall be denoted as the mean relative 
will be introduced. DEB, 

AV = Vg - V 

and the mean relative retardation 
magnitude AV/Vo over the contour DEB is 

€, the arithmetic mean of The 

n 
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By applying equatione (15) and (17) to the case of the motion of a 
partly submerged plate, the hydrostatic lift and drag forces, 
expreseed by the following formulas, are obtained: 

XF = - 0.5 y sin2 (2b0 - q) 
/ 

YF = 0.25 y s.in 2+ (2b0 - b y j  

where the forces are referred to unit length of the plate in the 
direction of the span. 

In order to express the terms XN, YN, and YJ as a func- 
tion of the ratio E:, the expressions of the magnitudes under the 
integral signs in equations (15) and (17) shall be written as func- 
tions of 6 .  Because the contour BED is a streamline (fig. lo), 
t h e  following relations may be written. 

af = vo - v cos a = - Vg - (1 - 6 )  cos a] ax 

BY substituting the expressiom obtained for &/& and &/by 
in equations (15) and (17) and after .some transformations, the 
following equations are obtained: 

XN = - E (2 - 6 )  sin bVo2 
2 

YJ = 2 (cos a + 6 - 1) bVO2 
2 J 



NACA TM 1246 21 

In Weee equationa, and a lso  i n  a l l  equations given hereafter, 
a cer ta in  aaslmption is made; namely, the integral  of the square8 of 

- the r a t i o  .AV/Vo were sUb8titUted by the square of the mean r a t i o  
AV/Vo, tha t  18, 

J BED 

Actually, if AV/Vo t € + A € ,  8UbstitUtiOn i n  the integral  
gives 

(gre=j. ( € + A € )  2 - =  db b 

BED BED 

The first integral  on the r igh t  gives E‘; the  second integral  
gives zero,  because by def ini t ion SA€ db/b = 0, and fj.ne.lly 
J(&)’ db/b gives a positive quantity, which, however, is so 
small that it may be neglected. Thus, f o r  coefficients of the 
order of unity, t h i s  quant i ty3n  the most unfavorable case w i l l  
amount t o  several thousandth8 and therefore with a suff ic ient  degree 
of accuracy the following equation may be written: 

Thus, for a given angle of attack and a 
l i f t  force from the circulation YJ a d  the 

given wetted area, the 
forces YN and XN 
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can be computed, if the mean re la t ive  retardation € f o r  given 
parameters of the motion is known. 

The dependence of the r a t i o  € on t h e  angle of a t tack  a and 
the wetted area w i l l  be established later when the experimental data 
obtained by Sottorf a t  the Hamburg towing basin are considered. For 
the present, the derivation of further formulas, which are required 
for  the prac t ica l  computation of the problem of a planing bottom, 
shall be regarded. 

Up t o  now, the phenomenon i n  an ideal  f l u i d ,  without taking 
account of the f r ic t ion ,  has been considered. 
motion of a so l id  body (plate) on the boundary of real (viscous) 
f luids ,  it is  necessary t o  add t o  the forces already determined the 
force due t o  the f r i c t i o n  a t  the surface of the body. The formulas 
for  the f r i c t i o n  force of a planing f lat  plate  w i l l  be derived. 
Investigations on the surface f r i c t i o n  have shown tha t  the f r i c t i o n  
on an element of surface of area dS is expressed i n  the following 
form 

In  the case of the 

where 
and V 

Cf is  a coefficient,  which depends on the Reynolds number, 
is the flow velocity a t  a given point of the wetted area. 

The dependence of the coefficient of f r i c t i o n  on the Reynolds 
number, according t o  the l a t e s t  investigatiom of the f r i c t i o n  of 
f l a t  plates,  w i l l  vary with the flow regime (f ig .  11, reference 1). 

For smooth polished.plates f o r  flow regimes w i t h  Reynolds 
number Re< 5.105, the  dependence of C y  on Re has the  follow- 
ing f o r m  (curve b)  : 

1.327 Cf = - 
6 

For the  motion of the  same plate  with Rejmolds number 
Re > 5*105, the laminar flow, w i t h  increasing Reynolds 
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number, gradually goes over into turbulent flow and the dependence 
of Cf on Re l e  expressed by the formula of Prandtl (curve 0): 

0 074 1700 

5fi Re 
Cf =.-- 

For a plate  w i t h  blunt leading edges or w i t h  roughness t h a t  
produces turbulence, the test data give the dependence of 
Re 

Cf on 
i n  the following form (curve a): 

Integrating equation (24) over S and replacing V by 
Vo - AV, the following is obtained for the plate  of wetted area 
S = tb :  

The f r i c t i o n  R is  tangent t o  the plate so t h a t  i t s  compo- 
nents along the  axes of coordinates w i l l  be 

2 The coefficient (1 - e )  cos a gives the correction i n  the 
magnitude of the f r i c t i o n  drag taking into account the inclination 
of the plate  t o  the flow, or i n  the more general case the curva- 
ture 

The force YR shall be neglected inwhat follows as it is 
very emall In camparison w i t h  the other components that determine 
the t o t a l  l i f t  force of the planing bottom. 
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A f t e r  adding a l l  the forces exerted on area S t 2b by the 
water, it may be said that the resistance of the p la te  is  compoeed 
of the hydrostatic reelstance XF, the form drag XN, and the  
f r i c t i o n  drag XR: 

and fo r  the components the following expressions are obtained: 

XF = - 0.5 7 Sin2 u (2b0 - b)  S 

x* = - Cf (1 - €)2 cos a L! svo2 
2 

J 

In  deriving the resistance forces and i n  passing from two- 
dimensional t o  three-dimensional f l o w ,  that is, t o  a p la te  of f i n i t e  
span 2 ,  
of the plate ,  was not introduced. 

the induced drag due t o  the vortices shed a t  the surface 

This drag could be introduced, i f  by analogy w i t h  the a i r f o i l  
theory, ll-ehaped vortices axe assumed and if the Biot-Savart 
theorem is considered as applicable without any changes t o  the 
present case of motion on the surface separating two f l u i d  mediume. 

This assumption may be considered superfluous, because i n  
order that the formulae developed. here may be pract ical ly  applied 
I t  is necessary t o  know the value of the factor  Q f o r  the given 
aspect r a t i o  of theeplate and the angle of attack. 
attack is obtained on the basis of test data and therefore already 
takes into account the induced drag. It would be incorrect t o  
introduce a second induced drag. 

The angle of 

The l i f t  force of a planing plate  is expressed as the sum of 
the hydrostatic l i f t  YF, the h y d r m i c  l i f t  due t o  form YN, 
and the l i f t  due t o  the circulation YJ: 
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where the components are given by the equation8 

YF = 0.25 y ein 2u (2bb - b) S 

In the following diecussion, use w i l l  be =de of the derired 
formulas in a somewhat different form introducing the nondlmenslonal 
coefficients C,, CR, and Cy where 

Cx t (2 - c )  sin a 

cy = c ( 2  - c )  cos a J 

Thua , 

3. EVALUATION OF ISIPWIMWTAL DATA OF SOT!PORF 

The formulas derived herein permit the determination of the 

= X as functions of the parameters of motion a8 the velocity, 
lift and the drag of a partly submerged plate if c is found and 
b/b 

'd a&!e of attack, and aepect ratio. 
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The r e l a t ion  between the r a t i o  a and the velocity, the angle 
of at tack a, and the aspect r a t i o  A of the w e t t e d  area w i l l  now 
be determined. I n  order t o  solve t h i s  problem theoretically,  there 
is required the analytical determination of the flow, i n  other wordg, 
a knuuledge of the complex potential  function w = rp + $i. 
solving t h i s  problem, great mathematical d i f f i c u l t i e s  are encoun- 
tered. Because the problem of giving formulas sui table  f o r  pract ical  
use is present and mathematical r igor  of t h i s  arralysis is not pre- 
tended, use shall be mde of the tests of Sottorf (reference 2)  on 
p lan iw plates  for the determination of the deperdencs of 

In 

d on 
a, vo, and h. 

The tests of Sottorf a t  the present are the  only published 
experimental data that permit analyzing the phenomenon of the 
planing of a plate  with suff ic ient  completenese. It should be 
remarked that the tests give a large number of t e s t  points f o r  
small aspect r a t io s  only. For 2 < h < 5 ,  the number of test 
points is very amall, and i n  order t o  obtain the required curves 
use must be mde of the method of interpolation. 

For h > 5, there are no test data at  a l l  but it was possible 
t o  obtain theoretically the fundamental re la t ions f o r  h = O D  and 
then by extrapolating the t e s t  curves it w a s  assumed poesi’ble t o  
prolong them t o  the aspect r a t i o  h = 10. 

The tests of Sottorf were conducted a t  the Hamburg tawing basin 
and were made on a plate  of constant span ( 2  = 300 mm). 
stant  l i f t  forces, varying f r o m  4 t o  45.2 kilograms, the plate  wae 
towed, over a range of veloci t ies  f r o m  4 t o  9 meters per second, a t  
various angle of attack. 
towing t r ia l  the following experimental values: 

For con- 

The resu l te  of the t e s t  give f o r  each 

Y 

X 

U 

b 

M 

l i f t  force of plate, (kg) 

t o t a l  resiatance of plate,  (kg) 

angle of attack, (deg) 

tawing velocity, (m/sec) 

wetted t&&bh i n  the s t a t e  of rest, (mm) 

wetted & i n  motion, (mu) 

moment with respect to lower edge of plate,  (kg/m) 

chouu’ * 

ch d 
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On the basis of the tests of Sottorf, the derived formulas per- 
mit obtaining the magnitude € in two ways: either operating with 
equation (30) and the test data on the resistance to the motion, or 
using the same test data and equation (32) referring only to- the lift 
fbrces. 
component of the frictional resistance on the x-axis. 
the resistances the probability of error is not excluded because the 
frictional resistance contains the coefficient Cf, the formulas 
for which cannot be considered as sufficiently correct f o r  all regimes 
of the motion. 

In the total resistance to the motion, there enters the 
In computing 

The factor e can be determined with a greater degree of 
accuracy from the data and formulas for lift forcee. 
the component due to the friction is very small so that the errors 
in the determination of e 
f irst case. 

In this case, 

will be considerably leas than in the 

The obtained graphs are not considered final and to supplement 
and correct them it is necessary to turn to the first case as is per- 
mitted by the accumulated experimental data on the planing plate. 

Thus, c shall be determined from the equation of the lift 
forces (32). 

With the accuracy inherent to all test results, the magnitude 
of the hydrostatic lift forces for each towing test is determined by 

YF = 0.25 7 sin 2u (2b0 - b)  b 0.3 

where for y the value 1000 kilograms per cubic meter was chosen. 

Then, subtracting from the total lift force Y measured in the 

c by the 
test the lift YF, 
of equation (32) is connected with the required magnitude 
following relation: 

the difference is obtained, which on the basis 

2 (y - YF) 
0.3 &VO2 cos u 

€ (2  - e )  = 

By solving this equation for c, the value of c may be 
obtained for each towing trial. 
Pc+;W9mntere per second and the load Y t 22.6 kilograms the results 

nus, for example, for V = 9.85 
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shown in  f igure 12 were obtained. 
test data of Sottorf gives a series s i m i l a r  t o  the curves of as 
a function of A and a for the veloci t ies  VO and load Y. From 
these curves, as a general rule ,  it may be concluded that f o r  a given 
velocity V and ver t ica l  load Y on a plate  of constant span 2,  
the r a t i o  
aspect r a t i o  A = Z/b. 

A s i m i l a r  evaluation of a l l  the 

€ increases with increasing angle of attack and the wetted 

F r o m  these curves, the value o f .  C as a function of the angle 

The curves of figure l3 give the change of 
of attack can be found fo r  any conetant value of the aspect r a t i o  
A = 2/b. with the 
angle of a t tack  a for  a conetant value of the wetted aspect ra t io .  

The change i n  e as a function of the aspect r a t i o  A f o r  
constant angles of a t tack cc is shown i n  figure 14. 

The numerical values fo r  these curves are given i n  table 1. 

The available experimental data permit the following conclusiona: 
The value of e 
and is a function of the angle of attack 
r a t i o  A. 

does not depend on the velocity of the planing plate  
a and the wetted aspect 

For a given A, the increase of € w i t h  the angle of a t tack 
a For a constant angle of attack 
E increases with increasing A. The straight l ine  of € against a 
with increase i n  the parameter A ( f ig .  13) approaches a cer ta in  
straight l i ne  tha t ,  it may be assumed, corresponds t o  an in f in i t e ly  
large aspect r a t i o  ( h  = 03). In the previous section, it w a s  shown 
t h a t  by computation the obtained formulas give, fo r  the par t ly  sub- 
merged plate ,  a lift force YN practically equal t o  zero. If t h i s  
assumption, which has not been mathematically proved, is made and, 
the coefficient of 8 SVo2 
are equated t o  zero, the following re la t ion  between 
of attack is obtained. 

is represented by a straight  l ine.  

i n  the expression f o r  YN (eqwtiona (33): 
€ and the angle 

e (2 - b) cos a - 2 (cos a + € - 1) = 0 

from which is  obtained 

2 (1 - cos a) 
e q l  cos a 
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The obtained expression gives the relation between c and the 
angle of attack for infinite span. 

- -  
The curve of C plotted againet a according to equation (36) 

is given in figure 14. a 
against a, with increasing A, approach asymptotically a certain 
straight line corresponding to A t OD is confirmed by the obtained 
analytical relation in equation (36). It should be noted that this 
expression was obtained independently of any experimental data and 
the values of the other forces obtained on its basis for A = OD do 
not contradict the physical phenomena, moreover, they confirm the 
asymptotic approach of the experimental curves to the limiting values 
corresponding to h = OD. 

The statement that the etraight lines of 

If the dependence of c on a and OD is known, f o r  any given 
angle of attack and aspect ratio the value of the coefficients 
Cy, and CR/Cf can be determined by use of equation (34) and there- 
fore, the drag and the lift of a plate planing at angle of attack a 
and aspect ratio A can be computed. 

Cx, 

The curves of the coefficients C,, Cy, and CR/Cf plotted 
against A for various angles of attack a are  given in figures 15 
to 17. 
an infinitely large aspect ratio, the value of E being determined 
from equation (36). 

There are also given the values of these coefficients for 

Ln addition to € the magnitude X = b/bo must be known for 
complete hydrodynamic computation of the planing plate. 
of the magnitude 
static forces' XF and YF. However, the computation shows that the 
values of XF and YF, for velocities corresponding to rise on the 
step and greater, are negligibly small in comparison with the remain- 
ing acting forces. 
coneidered, it may be assumed that these force8 are absent. 

The knowledge 
X makes possible the computation of the hydro- 

For this reason, within the range of veloclties 

The value X evidently depeds on the velocity, the angle of 

The 
attack, and the aspect ratio. 

' the basis of experimental data did not give positive results. 
determination of this relation will be returned to later and in 
order not to defer the discussion it is recommended that the planing 
angles of a = 3 - 4 C  be used to assume the value X =  1.15, which 
of course introduces a certain inaccuracy in the hydrodynamic compu- 
tation at velocities up to the rise on the step. The errors introduced 
by this approximation, however, rapidly drop and at the rise on the 
step entirely vanish. 

An attempt to obtain this relation on 
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The determination of the experimental relation between the 
center of pressure and the parameters that determine the motion of 
the plate are now considered. Here, as before, use is made of the 
tests of Sottorf. The follawing results are obtained on the basis 
of an analysis of these tests. 

The forces acting on the partly submerged plate may be divided, 
as regards the determination of their moments, into the following 
three kinds: 

(1) the friction forces, directed tangentially to the plate 
whoee moment about the lower wetted edge is zero: 

(2 )  the hydrostatic pressure forces, perpendicular to the plate, 
whose value over an element of the plate db varies linearly. The 
center of pressure of the sum of the hydrostatic forces is easily 
determined and their moment about the lower wetted edge of the plate 
is 

(3) the force of the hydrodynamic preslsure of the fluid on the 
plate. 
the lower wetted edge the moment %, 
follcwing relation: 

These forces, bping perpendicular to the plate, give about 
which is expressed by the 

This expression wae obtained in the following manner. The 
hydrodynamic force acting'on element db will be equal to: 

dP = p To2 € (2 - € )  db = $ (Po2 - $) db 

Its moment aM, about the lower wetted edge is given by 
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By integrating th i s  expression between the limits 0 t o  b, 
equation (38) is obtained f o r  a plate  of width 2. 

It is not d i f f i c u l t  t o  see that the equation f o r  the moment of 
the hydrodynamic forces about'the larer edge of the p la te  may be 
br ief ly  expressed i n  the following form: 

V02 MN = P - 2 tb2 CM 

where 

rb  
CM = - I € (2 - C )  bdb 

b2 

(39) 

J o  

,It is obvious that the magnitude CM is a function only of C .  This 
f ac t  is of essent ia l  importance In  the procedure of evaluating the 
data of Sottorf,  which f ollawe . 

From the measured momsnt of a l l  the forces acting on the planing 
plate,  the moment (computed by meam of equation (37)) due t o  the 
hydrostatic pressure is subtracted. By dividing the remainder by 

'02 Zb2, $ may be obtained. The coefficients CM computed 

in t h i s  manner f o r  a l l  the test points of Sot torf ,  determine a cer- 
t a i n  curve of CM against e, when graphically presented. 

This curve, which w i t h  suff ic ient  accuracy is a straight l ine 
is shown in figure 18. 
method of least squares, gives the slope 

The straight l ine ,  which is computed by the 
k = 1.58. 

Thu, the re la t ion  between the moment coefficient CM of the 
€ hy&Oaynamic forces and the r a t i o  

ing equation: 
may be expressed by the follow- 

CM = k€ = 1.58 € 
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The moment of a l l  the forces acting on the plate  about its lower 
wetted edge may be writ ten i n  the following form: 

M = MF + MN = y2b2 e in  a 3bo - 2b + kcp - V02 1b2 
6 2 

If f o r  a given velocity and given load the angle of at tack of 
the plate  and the wetted aspect r a t i o  a r e  known, the value of 6 can 
be found f r a m  the curve of d against a and A. From the obtained 
equation or from figure 18, the value of the moment coefficient can 
be found. 
forces can then be obtained. By adding the moment of the hydrostatic 
forces obtained from equation (37), the moment of a l l  the forces ac t -  
ing on the plate  can a l so  be obtained. 

If required, the center of pressure of the hydrodynamic 

' The wetted aspect r a t i o  t h s t  is required here may be determined 
i n  the following manner. *om the data the load coefficient C, is 
obtained 

This coefficient characterizes the degree of loading cf the 
plate. On the curve of figure 1 9  fo r  a given angle of a t tack  and 
constant CB, the aspect r a t i o  A, at which the given plate w i l l  
plane for  the velocity V, width 1 ,  and load Y may be found. 

In  the following discussion, the r a t i o  of the l i f t  force of the 
plate  t o  the t o t a l  resistance a s  the planing efficiency of the plate  
w i l l  be 

Y k = -  x 

The value of the coefficient k f o r  the case of motion of a 
plate  of f i n i t e  aspect r a t i o  i n  a rea l  viscous f lu id  w i l l  n o w  be 
considered i n  more detail. The magnitude l / k  = p, the reciprocal 
of the efficiency, w i l l  now be analyzed. 
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The derived equations permit writing the following expression 
for p: 

The right side of the equation, is expressed by two terms, which 
permits coneidering each term separately. The first component term 
determines the efficiency of the plate of any span for motion in an 
ideal nonvisoous fluid. This magnitude is exactly equal to tan a 
because in an ideal fluid the plate is acted on only by normal 
forces : 

The seccnd term 

gives the correction due to the viscosity and, hence, the existence 
of surface friction. First of all, the term YF in the denominator 
of the expression entering a8 a lift force due to the hydrodynamic 
pressure on the wetted plate is rejected because the term 
decreases with increasing velocity and may be already practically 
neglected starting at velocities equal to 75 percent of the velocity 
in rising on the step. By neglecting this term, that is ccnaidering 
the plate in the state of planing where its water displacement is 
negligible, the values for XR, YN, and YJ determined by equa- 
tione (35) may be substituted. 
there results 

YF rapidly 

Then dividing by 8 SVo2 cos a 
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Thw, p is given by 

The variat ion of p with the angle of a t tack and aspect r a t i o  
of the p la te  w i l l  now be considered. 
gives the relation8 obtained by equation (45). The f r i c t i o n  coef- 
f i c i en t  C f ,  
number i n  the general case, here assumes a constant value equal t o  
0.003, which corresponds i n  the case of the turbulent regime t o  the 
Reynolds number Re = 9 lo6. The change of the magnitude p with  
the Reynolds number w i l l  subsequently be conaidered. Inspection of 
the curves f o r  

The family of curves ( f ig .  20) 

which as been previously shown, depends on the Reynolds 

Cf = 0.003 permits drawing the following conclusions: 

For a constant coefficient of f r i c t i o n  and a constant aspect 
r a t io ,  the value of 
angle of attack. 

p has a sharply defined minimum f o r  a cer ta in  

For re la t ive ly  small deviations f r o m  the opthum angle, the 
impairment of the planing efficiency of the plate,  that is the 
increase i n  the mgnitude p, w i l l  be considerable. 

For the f r i c t i o n  coefficient Cf = 0.003, the most favorable 
angle of a t tack lies i n  the range of 4 O  t o  20. With increasing 
aspect r a t io ,  the most favorable angle of a t tack decreaaes from 
4 O  a t  A = 0.5 t o  2 O  a t  A = OD. 

The largest  value of the planing efficiency is at ta ined f o r  
an inf in i te ly  large aspect r a t i o  
however, that the efficiency f o r  aspect r a t i o  
differs only s l igh t ly  from the value of the efficiency a t  
Thua, for  A = 10, p = 0.078; whereas fo r  A = 00, p = 0.0755, 
tha t  is for  the aspect r a t i o  
that for A = em by only 3 percent. 

( A  = a). It may be assumed, 
A Z 10 already 

A =a. 

the efficiency is less than A = 10 

Eecause the analytical  part of this paper does not f u l l y  take 
into account a l l  the factors that impair the  planing efficiency of 
the plate,  it may be expected tha t  an aspect r a t i o  of 7:8 w i l l  be 
the most favorable. 
expected not an improvement, but an impairment of the planing effi- 
ciency as s. result of separation of the f l o w  and the turbulence, 
which have not been considered here. 

BeyoIld th i s  l imiting value there m y  be 
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The computation of the reeistance (fig.  23) with increasing 
velocity f o r  plates  planing a t  constant load Y = 18 kilograma and 
constant angle of attack 
only of the surface f r i c t i o n  there ie fo r  a cer ta in  aspect r a t i o  a 
limiting optimum value of the efficiency k and further increaee 
i n  the adpect r a t i o  impairs the efficiency (fig.  21). 
case of the turbulent f lav  t h i s  value is 
of t rans i t ion  t o  the turbulent flow the optimum value is 

a = 4 O  shows that even with account taken 

Thus, i n  the 
A =a 7.5 and i n  the case 

A = 9.7. 

The reason f o r  the Impairment of the planing efficiency after 
reaching cer ta in  values of 
resietance due t o  the surface f r i c t i o n  for a constant value of the 
hydrodynamic resistance Xm = Y tan a. In the process of planing, 
the f r ic f iona l  resistance is influenced by the following factors.  
With increasing velocity, the Reynolds number drops and approaches 
a comtant value that fo r  a turbulent regime gives an increaee i n  
the coefficient of f r i c t i o n  (a factor  that increases the f r i c t iona l  
resistance).  W i t h  increasing velocity there is a decrease in  the 
f r i c t ion  surface area (a factor  that decreases the f r i c t iona l  resist- 
ance). Because the f r i c t iona l  resistance is proportional t o  the 
square of the velocity, the increase i n  the f r i c t i o n  due t o  the 
increase i n  velocity is 80 large that it compensates the drop i n  
the resistance due t o  the decreased f r i c t ion  area and together with 
the added resistance due t o  the change of the Reynolds number gives 
as a f i n a l  r e su l t  an increase i n  the fr ic t ion.  

A .is t o  be found i n  the increasing 

The depedence of p on the angle of at tack and the aspect 
r a t i o  fo r  Cf = 0.003 are shown i n  figure 20. Naw it w i l l  be shown 
how the optimum values of the angle of attack and the values of 
change as Cf changes. 

p 

The minimum values of p ae functions of the optlmum angle of 
attack for three different  coefficients of f r i c t i o n  Cf equal t o  
0.0025, 0.003, and 0.004 are plotted. i n  figure 22. 

The values of the optimum angle and the values of 
efficiency of the plate,  are l a id  off on the ordinate. 
of curves determine the change i n  the optimum angle of a t tack and 
efficiency k f o r  the three values of Cf, 0.0025, 0.003, and 
0.004. The dotted curves r e fe r  t o  the same aspect r a t io .  On the 
abscissa are laid off the values of the load coefficiente denoted by 

k, the 
Two groups 
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Inspection of these curves permits drawing the following con- 
clusioIl8 : 

With increasing Reynolds number, which i n  the case 09 turbulent 

the planing efficiency of the plate  improves. A t  the  same time 
motion always corresponds t o  a decrease in the f r i c t i o n  coefficient 
Cf, 
there is a l so  a decrease i n  the optimum angle of attack. 

For suff ic ient ly  small load coefficients (which correspond t o  
aspect r a t i o s  
l i t t l e  from the value fo r  in f in i te  span. In  accordance with w h a t  
has been said, f o r  load coefficients CB 0.01 there must be 
expected not an increase i n  the efficiency but a decrease due t o  
the h y d r o m i c  resistance,  which w a s  not taken into account, as 
well as the f r i c t iona l  resistance. 

A from 7 t o  lo), the planing efficiency differs 

The change i n  the separate resistance t e r n  the  sum of which 
is the t o t a l  resietance of the plate,  w i l l  now be considered. 
computation f o r  a p l a t e  of width 
out assuming the angle of attack constant and equal t o  4 O  and choosing 
the veloci t ies  over the range 0 t o  22 meters per second. The ver t i ca l  
load was taken constant and equal t o  18 kilograms. 
resu l t s ,  as has been shown, are t o  be expected a t  veloci t ies  of pure 
planing. H e r e  the curves shown i n  figure 23 are obtained. 
hydrostatic resistance rapidly increases from zero t o  the maximum 
value tha t  corresponds t o  the velocity V = 2 meters per second, 
then rapidly drops and a t  V = 10 meters per second is pract ical ly  
equal t o  zero, t ha t  is, it may be assumed that f o r  veloci t ies  above 
V = 10 meters per second pure planing occurs. 

The 
2 = 0.3 meter has here been carried 

The most accurate 

The 

The form drag, increasing from zero, reaches a t  the velocity 
V = 10 meters per second its maximum value and 
practically remains constant with further increase i n  velocity. 

XN = 18 tan 4 O  

In  computing the resistance due t o  the surface f r i c t ion ,  two 
regimes are ass.umed. 
the f l m  fYom laminar t o  turbulent and it corresponds t o  the curve 

As was t o  have been expected, case corresponds t o  the curve Xm. 
the turbulent regime gives an increased surface f r ic t ion .  
general conclusion w f t h  regard t o  the f r i c t iona l  resistance is the 
following: 
resistance, s t a r t i ng  from zBPo, reaches a maximum value, then drops, 
having m i n i m u m s  a t  V = 15 

The first r e g h e  is the gradual t rans i t ion  of 

"he second regime is t h a t  of complete turbulent flow, t h i s  XRL. 
The 

A t  a cer ta in  velocity (V = 6 m/aec) the f r i c t iona l  

and 17.5 meters per second f o r  the 
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laminar and turbulent states, respectively, a d  with further increase 
i n  velocity slowly increases. In analyzing the change i n  the planing 
efficiency, the reasone fo r  t h i s  phenomenon have been conaidered. 

The t o t a l  curve of the resistance i n  the case of the  turbulent 
regime gives the following character of the flow: A t  the  velocity 
V = 6 d e r 8  per second, which is termed the c r i t i c a l  velocity,  the 
curve has a maximum resistance. V = 15 m e t e r s  per second 
the curve has a minimum, thereaf ter  it slowly increases due t o  t h e  
increasing f r i c t iona l  resistance. 
f l o w  is aleo possessed by the resistance curve f o r  the case of transi- 
t ion  from laminar t o  turbulent f l o w .  

Then a t  

An analogous character of the 

In  conclusion, the results of computation with the formulae and 
curves given i n  t h i s  paper are compared w i t h  the data obtained d i rec t ly  
from tests. This comparison w a s  made for  three cases. 
re fe r  to the t e s t  data of Sottorf on a plate  with 
the first case the plate, .being loaded by a ver t ica l  force 
t o  8 kilograms, w a s  towed with velocity 
second; i n  the second case, the same plate had the load 
kilogr- and the corresponding velocity was 
The th i rd  case re fers  t o  the towing of a seaplane model. 
a d  experimental curves obtained fo r  the plate  permit drawing the 
following conclusions: 

The first two 
In  2 = 0.3 meter. 

V equal t o  4 meters per 
A equal 

A = 18 
V = 6 meters per second. 

The computed 

The re su l t s  obtained by computation almost coincide w i t h  the 
towing test r e su l t s  ( f ig .  24) .  
ferent  veloci t ies  and loads, there a r e  two corresponding f r i c t i o n  
regimes; namely, a t  V t 4 meters per second and A = 8 kilograms 
there is a t rans i t ion  from laminar  t o  turbulent flow (equation (25 ) ) ;  
whereas a t  V = 6 meters per second and A = 18 kilograms the f r i c -  
t ion  has a clearly marked turbulent character. 

For the same plate  tared a t  two d i f -  

Figure 25 shows the agreement of the  theoret ical  and towing 
test r e su l t s  f o r  the seaplane model. 

The curve XT gives- the t o t a l  resistance of the model computed 
on the assumption of a flat bottom, the angle of a t tack of the model 
being taken from the arithmetic mean of the angles w i t h  the water l ine.  
The curves % give the same resistance corrected by approximate 
formulas for the keel of the model. 
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Notwithstanding the fact  that the plate ia only a rough approx- 
imation t o  the bottom of the m o d e l ,  the agreement between the theory 
and experiment is considered to be very satisfactory. 

Tramlated by S. Reies 
National Advisory Committee 
for Aeronautics. 

1. Prandtl, L., and Tietjens, 0. 0.: Applied Hydro- and Aero- 
mechanics. McGraw-Hill Book Co., Inc., 1934, p. 291. 

2 .  Sottorf, W.:  Experiments with Planing Surfaces. NACA TM 661, 
1932. 
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8 
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Table 1, - Values of mean relative retardation E as function of angle 
of attaok a and aspect ratio A. 

3 
- - 
1.60 
,225 
2.80 
3.30 
4 . 0  
4.50 
4.80 
4.Y5 
5.04 
5.09 
5.1 1 
5.13 
5.23 

4 1 5  6 1 7 1 8  I 9 I 10 
- - 

3.15 
4.50 
5.75 
6.70 
8.15 
9.00 
9.60 
9.90 

10.08 
10.17 
10.23 
10.26 
10.50 

0.5 
1 
1.5 
2 
3 
4 
5 
6 
7 
8 
9 

10 
co 

5.20 
7.60 
9.75 

11.30 
13.10 
14.95 

1b.M 
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17.05 
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17.60 

15.w 
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4.70 
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8.80 

10.25 
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Table 2. Values of p as function of a and A for Cr = 0.003 
- 
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Table 3. Values of p as function of a and h f o r  Cf = 0,004 - 
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Table 4. Values af p as function of a and h for C, = 0.0025 - 
1 - 

0.2380 
0. I650 
0. I440 
0.1340 
0.1 100 
0,1010 
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Table 5. Optimum values of k and a as functions of the friction 
coefficient Cf - 
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Table 6. Values of form drag coefficient C, a8 function of a 
and X 
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Table 7. Values of lift coefficient Cy = CyN + C p  as function 
of a and h 

7 
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0.0601 
0.0745 
0 0860 
0.1030 
0.1150 
0.1230 
6.1270 
0.1300 
0.1310 
0.1320 
0.1320 
0.1350 

0.01 IO 
0.0165 
0.0205 
0.0232 
0.0275 
0.0303 
0.0720 
0.0329 
0.0.332 
0.0332 
0.0338 
0,0338 
0.0330 

0.051 5 
0.0750 
0.0950 
0,1090 
0.1300 
0.1440 
0.1520 
0.1570 
0.1600 
.0.1617 
0.1625 
0.1630 
0. I670 1 

Table 8. Values of load coefficient CB = C,/~as function of ~- 
a and h 

5 - 
0.1030 
0.0750 
0.0535 
0.0545 
0.0434 
0.0360 
0.0304 
0,0262 
0.0228 
0.0202 
0,0181 
0.0163 

~ 

10 - 
0.2 Io0 
0.1505 
0. I266 
0.1 075 
0.0834 
0.0686 
0.0578 
0.0497 
0.0435 
0.0384 
0.0342 
0.0309 

9 

0.1808 

0.0625 
0.0528 

Table 9. Values of ratio %/Cf as a function of a and h - 
5 - 

0.946 
0.923 
0.903 
0.888 
0.868 
0.855 
0.846 
0.840 
0.837 
0,834 
0.833 
0.832 
0.830 

- 
6 

0,935 
0.908 
0,886 
0.866 
0.810 
0.821 
0.81 3 
0.806 
0.802 
OB01 
0,800 
0.8LK) 
0.800 

- 
- 

7 

0.920 
0,888 
0,862 
0,840 
0.8 I2 
0.791 
0,783 
0,776 
0,771 
0.768 
0.767 
0.766 
0.770 

- 

- 
8 - 

0.910 
0.874 
0.814 
0,822 
0.758 
0.767 
0.751 
0.746 
0.742 
0.740 
0.738 
0.737 
0.740 

2 1 3 1 4  
0.930 
0.970 
0.963 
0,956 
0.946 
0.939 
0.935 
0.933 
0.931 
0.W 
0,930 
0,930 
0,930 

0.970 
0.956 
0.944 
0.934 
O.%O 
0.91 1 
0.905 
0.902 
0.900 
0.899 
0.899 
0.899 
0.900 

0,960 
0.940 
0.924 
0.912 
0.894 
0.884 
0.876 
0.870 
0.868 
0.866 
0.865 
0.864 
0.863 

0.5 I 0.992 
1 OS86 
1.5 0.982 
2 0.978 
3 0.974 
4 0.97 1 
6 0968 
6 0.966 
7 0,960 
8 0.9655 
9 0.965 

10 0.964 
00 0.960 

4 
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- - -  ------ 
Figure 1. - Flow about seaplane f loat  Fn two-'bimensional flow. 

Figure 2. - Flow about flying-boat-hull bottom in two-dimensional flow. 
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Figure 4 .  
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L i f t  forces due t c  
air : u h t  - 

- lift 
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8 10 

Figure 6. - Variation of hydrostatic and hydrodynamic lift forces ex- 
pressed in  percentage of sum w i t h  angle of a t tack- for  planing plate  
a t  V = 6 meters per second, load Y = 18 kilograms, and width 1 = 0.3 

meter. 
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Figure 7 .  - Variation of f r i c t i o n  and form resistances expressed i n  
percentage of sum with angle of a t tack for a f l a t - p l a t e  planing 
a t  V = 6 meters per second, load Y = 18 kilograms, and width I, = 

0.3 meter. 
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Figure 8. - C u r v e  of re la t ion  between hydrostatic and hydroa i c  lift 
forces  computed f o r  plate  planing a t  angle of a t tack  a = 4 c d  load 

P = 18 k l l o ~ 8 .  



46 

Figure 9. - Motion of planlng f la t  plate. 

Figure 10. 
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Figure 11. - Dependence of f r i c t i o n  coefficient on Reynolds number f o r  f lat  plates. 
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Figure 13. - Dependence of E on u and h .  
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Figure 14. - Dependence of E on h and a. 
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Figure 15. - Dependence of form drag coefficient on a end A. 
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2 Figure 17. - Dependence of ra t io  %/Cr = (1 - E) cos a on angle of attack 

a and aspect r a t io  A. 
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Figure 18. - Dependence of the  moment coefficient C, on E. 
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Figure 19. - Dependence of load coefficient cB = C y / h  on angle of attack 

a and aspect r a t i o  A .  
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Figure 21. - Curves of Reynolds number R , aspect ratio h and reciprocal 

Y = 18 kilograms planing at angle of attack a = 4'. 
of the p l h n g  efficiency p f o r  a Elate of width 2 . =  0.3 meter and load 
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U, m/sec 

Figure 23. - Computed resistance c~rve8  f o r  a plate planing a t  angle 
a = 40 , load Y = 18 kilograms, and width 2 = 0.3 meter. 
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Figure 24. 
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